768 research outputs found

    The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

    Get PDF
    Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation. © 2014 Springer Science+Business Media Dordrecht

    Taxing gambling machines to enhance tourism

    Get PDF
    Gambling machines are a key component of global gambling tourism. The taxation of these machines is a highly controversial area of policy debate involving tensions between industry profitability, economic growth and government revenue. We present the background and context to the debate around the optimal taxation of gambling machines, and reach conclusions and recommendations based on the recent and extended literature as to the best way to tax gambling machines in order to enhance tourism. These recommendations provide guidance for jurisdictions in which gambling tourism is a significant actual or potential source of public revenue

    The association of levels of physical activity with metabolic syndrome in rural Australian adults

    Get PDF
    Background:&nbsp; Physical activity (PA) reduces risk factors related to metabolic syndrome. Rurality influences the way people incorporate physical activity into daily life. The aim of this study is to determine the association of PA level with metabolic syndrome in a rural Australian population. The influence of adiposity on these associations is also investigated.Methods: Three cross-sectional population health surveys were conducted in south-east Australia during 2004&ndash;2006 using a random population sample (n = 1563, participation rate 49%) aged 25&ndash;74 years. PA was assessed via a self-administered questionnaire, and components of the metabolic syndrome via anthropometric measurements taken by specially trained nurses and laboratory tests.Results: Approximately one-fifth of participants were inactive in leisure-time and over one-third had metabolic syndrome (men 39%, women 33%; p = 0.022). There was an inverse association between level of PA and metabolic syndrome (p &lt; 0.001). Men who were inactive in leisure-time were more than twice as likely and women more than three times as likely to have metabolic syndrome compared with those having high PA. Body mass index (BMI) is a mediating factor in the association between level of PA and metabolic syndrome.Conclusion: Some PA is better than none if adults, particularly women, are to reduce their risk of metabolic syndrome and associated vascular diseases. Specialised interventions that take rurality into consideration are recommended for adults who are inactive.<br /

    Controlling spins in adsorbed molecules by a chemical switch

    Get PDF
    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect

    Cell Cycle-Dependent Microtubule-Based Dynamic Transport of Cytoplasmic Dynein in Mammalian Cells

    Get PDF
    BACKGROUND:Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE:These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein

    Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer

    Get PDF
    The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an “on/off switch” mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer

    Differentiation dependent expression of urocortin’s mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone

    Get PDF
    Urocortin-1 (UCN) a corticotropin releasing-factor (CRF) related peptide, has been found to be expressed in many different tissues like the central nervous system, the cardiovascular system, adipose tissue, and skeletal muscle. The effects of UCN are mediated via stimulation of CRF-receptors 1 and 2 (CRFR1 and 2, CRFR’s) with a high affinity for CRFR2. It has been shown that the CRF-related peptides and CRFR’s are involved in the regulation of stress-related endocrine, autonomic and behavioural responses. Using immunocytochemistry, immunohistochemistry and RT–PCR, we now can show the differentiation dependent expression of UCN mRNA and peptide in human mesenchymal progenitor cells (MSCs) directed to the osteoblastic phenotype for the first time. UCN expression was down regulated by TGF-beta and BMP-2 in the early proliferation phase of osteoblast development, whereas dexamethasone (dex) minimally induced UCN gene expression during matrix maturation after 24 h stimulation. Stimulation of MSCs for 28 days with ascorbate/beta-glycerophosphate (asc/bGp) induced UCN gene expression at day 14. This effect was prevented when using 1,25-vitamin D3 or dex in addition. There was no obvious correlation to osteocalcin (OCN) gene expression in these experiments. In MSCs from patients with metabolic bone disease (n = 9) UCN gene expression was significantly higher compared to MSCs from normal controls (n = 6). Human MSCs did not express any of the CRFR’s during differentiation to osteoblasts. Our results indicate that UCN is produced during the development of MSCs to osteoblasts and differentially regulated during culture as well as by differentiation factors. The expression is maximal between proliferation and matrix maturation phase. However, UCN does not seem to act on the osteoblast itself as shown by the missing CRFR’s. Our results suggest new perspectives on the role of urocortin in human skeletal tissue in health and disease
    corecore